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Abstract

The problem of faithfulness of the (reduced) Burau representation
for n = 4 is known to be equivalent to the problem of whether certain
two matrices A and B generate a free group of rank two. In this note
we give a simple proof that 〈A3, B3〉 is a free group of rank two.

1 Introduction.

The problem of faithfulness of the Burau representation for n = 4 remains
the only open case of the problem in general. The representation is not
faithful for n ≥ 5 (see [2], [3], [4]) and it is faithful for n = 1, 2, 3. Cases
n = 1, 2 are obvious and n = 3 is not very difficult.

Let us consider the following matrices:

b =

 −t−1 1 0
0 1 0
0 1 −t

 , B = b−1 =

 −t t 0
0 1 0
0 t−1 −t−1

 ,

a =

 1− t 0 −1
t−1 − t −t−1 0
−t 0 0

 , A = a−1 =

 0 0 −t−1

0 −t −t−1 + t
−1 0 −t−1 + 1

 .

It is known that the problem of faithfulness of the Burau representation for
the braid group B4 is equivalent to the problem of whether A and B generate
a free group of rank 2 (see [1], Theorem 3.19). In this paper we give a simple
proof that A3 and B3 generate the free group of rank two, the result known
earlier from [5]. We also show that the products of the considered matrices
have some special properties and we prove a minor generalisation of the
main result. We hope that similar considerations used in a more refined
way may prove that A2 and B2 generate the free group of rank two.
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2 A3, B3 generate non–abelian free group of rank
two.

We introduced the convention A = a−1, B = b−1. We recall this to explain
what we mean by non–reducible in the Theorem below.

Theorem 2.1. Let w be a non-reducible word in letters a,A, b, B such that
wherever one of the letters appears, it is repeated at least three times consec-
utively. Then the corresponding product of matrices is not equal to the unit
matrix. In particular A3 and B3 generate the free group of rank 2.

Proof idea. We may as well assume that the word w is of the form v · bbb,
otherwise we can adjust it by conjugation. The idea is to show that the first
column of the product will always contain terms td with negative exponents
— which clearly implies that the whole matrix is not the unit matrix.

We will use schematical information of the positions occupied by terms

of smallest degree (in the first column) like this:
[
X
◦
◦

]
means that in the first

column of the considered matrix there is a single term of smallest degree
and that it is in position (1, 1). We will refer to thus depicted positioning
of lowest degree terms as the s–pattern of the matrix. Altogether one can
imagine the following s–patterns[

X
◦
◦

]
,
[ ◦
X
◦

]
,
[ ◦

◦
X

]
,
[
X
X
◦

]
,
[
X
◦
X

]
,
[ ◦
X
X

]
,
[
X
X
X

]
.

They are all possible in the general case but only some of them will appear
in the context of the Theorem.
We will need to study possible changes to the s–pattern when the product
of matrices is multiplied from the left by one more matrix. It is clear that
the smallest degree may only go down by one, stay unchanged or go up by
one. There are some cases when the lowest degree certainly goes down and
the s–pattern is either preserved or changed in a controlled way. We record
this cases schematically below.

B
[ ◦

◦
X

]
+−−→

[ ◦
◦
X

]
, B

[ ◦
X
◦

]
+−−→

[ ◦
◦
X

]
, b

[
X
◦
◦

]
+−−→

[
X
◦
◦

]
, b

[
X
X
X

]
+−−→

[
X
◦
◦

]
,

A
[
X
X
X

]
+−−→

[
X
X
X

]
, A

[ ◦
◦
X

]
+−−→

[
X
X
X

]
, a

[ ◦
X
◦

]
+−−→

[ ◦
X
◦

]
, a

[
X
◦
◦

]
+−−→

[ ◦
X
◦

]
.

As for the proof, the observation is really obvious: the reason for such
behaviour is that when multiplying the considered matrices (one of them
3 × 3, the other 3 × 1) terms of lowest degree in one matrix meet terms of
lowest degree in the other matrix with no possibility of being cancelled out.
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Proposition 2.1. Let xw (x stands for a single letter) be a non-reducible
non–empty word, satisfying the condition:
in the considered sequence of letters that form w all letters appear in se-
quences of length ≥ 3 except possibly the whole word w begins with x or xx.
Then
1. the possible s–patterns are:[

X
◦
◦

]
,
[
X
X
X

]
for x = b[ ◦

◦
X

]
,
[ ◦
X
◦

]
for x = B[ ◦

X
◦

]
,
[
X
◦
◦

]
for x = a[

X
X
X

]
,
[ ◦

◦
X

]
for x = A

2. In passing from w to xw we decrease the lowest degree exponent if
the s–pattern of w is the one given in the first column (the typical one) and
we keep it unchanged if the s–pattern is the one given in the second column
(the exceptional one).

3. The exceptional cases can only appear for xw when the leftmost letter
of w is not x. If this is satisfied and the leftmost letter of w is y, then the
s–pattern of sw is exceptional if and only if xy is equal as a formal word to
ba, aB,BA or Ab.

Proposition⇒ Theorem. In effect, the Proposition says that with multi-
plication from the left by the next matrix in the word, the minimum degree
decreases, except in some specifically described cases. These cases are when
the letter x begins a new group of letters in the word and the two matrices in
the neighbour groups are ba or aB or BA or Ab. This is more than we need to
prove the main Theorem — we know that there would be terms of negative
exponent in every product that ends with bbb (the need to conjugate to have
bbb at the end comes from the fact that with B or A we would have no term
of negative exponent to start. On the other hand, a is as good as b). As an
example let us consider the word BBBAAAAbbbaaabbbaaabbbAAABBBAAAbbb.
We show below how the lowest degree in the first column changes when we
multiply matrices, starting from the right. The plus sign indicates that the
degree goes down after multiplication by the matrix shown above. The plus
sign under the first letter (b) indicates that the exponent of the lowest degree
term is −1. The space means that there is no change.
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BBBAAAAbbbaaabbbaaabbbAAABBBAAAbbb

++ +++ ++ +++++ +++++++++++ ++ +++

As may be seen from the above pattern the lowest degree appearing in the
first column of the product is −28 which is equal to the difference of the
number of group changes of types specified in the Propositions (6) and the
number of letters (34) in the word.
Proof of Proposition. Let us consider a word of the form BAAAw. We

assume by induction that the s–pattern of Aw is
[
X
X
X

]
or

[ ◦
◦
X

]
for x = A.

Calculation shows that in both cases the s–pattern of AAw is
[
X
X
X

]
. More-

over, the coefficients of the lowest degree (of exponent, say, d) terms in the
first column are equal. The same applies to AAAw, additionally we have
that also the coefficients of the second lowest degree are equal. Therefore,
the first column of AAAw looks as below: atd + btd+1 + R1

atd + btd+1 + R2

atd + btd+1 + R3

 ,

where polynomials R1, R2, R3 contain terms of degree ≥ d + 2, or by con-
vention to be used later:  atd + btd+1 + . . .

atd + btd+1 + . . .
atd + btd+1 + . . .

 .

Now, we need to consider the s–pattern of BAAAw. For that we need to
multiply matrices (3× 3 by 3× 1). −t t 0

0 1 0
0 t−1 −t−1

 ·
 atd + btd+1 + . . .

atd + btd+1 + . . .
atd + btd+1 + . . .


It is just an exercise in matrix multiplication to see that the single lowest
degree term will appear in the middle row and will be of degree d as ex-
pected. The case of bAAAw is even more obvious.
We describe briefly one more case, that of Abbbw. By inductive assumption

the s–pattern for bw is
[
X
◦
◦

]
or

[
X
X
X

]
. In both cases multiplication by b gives

pattern
[
X
◦
◦

]
. One more multiplication by b and we have

[
X
◦
◦

]
pattern with

the exponent of smallest degree term (say, d) smaller by at least 2 than
terms in othe rows. This means that the first row of Abbbw looks like
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 atd + . . .
btd+2 + . . .
ctd+2 + . . .


Now we multiply by A 0 0 −t−1

0 −t −t−1 + t
−1 0 −t−1 + 1

 atd + . . .
btd+2 + . . .
ctd+2 + . . .


Calculation shows that the s–pattern of the product is

[ ◦
◦
X

]
and the lowest

degree exponent is again d as predicted in the Proposition. All other cases
are decided in a similar manner which completes the proof of the Proposition
and the proof of the Theorem.

Let us observe that in the argument above (for Abbbw and BAAAw) we
needed the assumption that b or A appears three times to ensure that before
we finally multiply by the last matrix (A or B) we have a suitable form of
the 3× 1 matrix on the right. The first step was to ensure that bw (or Aw)
is of a suitable form. It would be sufficient to have just Abbw and BAAw if
this was true for some other reason. We will use this observation to obtain
a much more general result.
The problem of faithfulness of Burau representation is really reduced to the
problem whether A and B generate the trivial group of rank 2. Therefore
we need to consider whether the product of matrices arising from a non–
reducible formal word in A, a,B, b can be equal to the unit matrix. While the
formulation of Theorem 1.1 is certainly more elegant, we can easily obtain
the following generalisation.

Theorem 2.2. Let w be a non-reducible word in letters a,A, b, B such wher-
ever the word contains BA,Ab, ba or aB it is as a part of a bigger sequence
of at least B3A2, A3b2, b3a2 or a3b2. Then the product of the considered
matrices is not the unit matrix.

We will not go into the details of the proof. There is really no difference
from the proof of Theorem 2.1. We need a proposition similar to Proposition
2.1 and we obtain the same simple way to calculate the exponent of the
lowest degree term. Once again it may be prudent to assume that the
rightmost letter is a b to get the negative degree right at the start.

As an example let us show again a pattern like the one considered earlier,
this time for the word aaaBBabAAAbbbaabAABabbAABabABabbABabbb. The
corresponding pattern is
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aaaBBabAAAbbbaabAABabbAABabABabbABabbb

++ ++++++ ++ +++++++++++++++++++++++++

Observe that we deliberately used a long suffix of the form
aabAABabbAABabABabbABabbb just to illustrate that it is quite harmless,
although it is very far from belonging to 〈A3, B3〉 or even to 〈A2, B2〉 and
in fact it has just single letters at twelve positions. In the whole word we
have an aaaBB and a bbbaa. Those would be forbidden if shorter by just
one letter.
Finally, we do not wish to leave the reader under illusion that the sequence
of exponents of lowest degree terms might be non increasing in general, so
we give an example to the contrary:
bbbbAbbbbbbbbb

---- +++++++++
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